Calculus
Of One Real Variable – By Pheng Kim Ving 
1.1.3 The Indeterminate Form Of Type 0/0 
1. The Indeterminate Form Of Type 0/0 
Find this limit if it exists:
We cannot use Theorem
3.2 iv of Section 1.1.2 because the denominator here approaches 0. If we
tried then we'd get
0/0, the numerator also approaching 0. Since we cannot divide anything
including 0 by 0, we don't know whether or not
this limit exists or what it is if it exists. We however can use a calculator
to find out what it might be, as done in Fig. 1.1
as follows:

Fig. 1.1 
We see that the given limit appears to exist
and equal 10. We can find it formally as follows.
EOS
Indeed the limit is 10.
A rational function is a ratio or fraction of two polynomials. Let's
examine the limit of a rational function when both its
numerator and denominator approach 0. Such a limit is said to be in the form
0/0. Let's consider the following three
trivial limits:
When both the numerator f(x) and denominator g(x) of
a rational function r(x) = f(x)/g(x) approach 0 as x approaches
some point a, the
limit of r is said to be of
the indeterminate form of type 0/0.
Go To Problems & Solutions Return To Top Of Page
2. Not A Real Fraction 
The form 0/0 describes that both the
numerator and denominator of r approach 0, at either the same or different speeds,
as x approaches a. It doesn't say that the limit of r equals 0/0 – one cannot divide anything by 0.
Remember, x remains
different from a, so the
denominator remains different from 0. The form 0/0 is a descriptive form,
not a real fraction.
Go To Problems &
Solutions Return
To Top Of Page
3. Cancellation Of The Common Factor 
When a limit is of the indeterminate form of
type 0/0, you must do some algebraic manipulation to get rid of that form.
One method is to factor both the numerator and
denominator, and then cancel out the common factor, as done in the
solution of example 1.1 and for other limits in
Part 1. Remark that in solution
of example 1.1 we can cancel out
Problems & Solutions

1. Find this limit if it exists:
Solution
2. Find this limit if
it exists:
3. Find:
if it exists.
Solution
4.
Does:
exist?
Solution
5.
Evaluate:
if it exists.
Return To Top Of Page Return To Contents